
11

Privacy Protection for Low-Cost Privacy Protection for Low-Cost Privacy Protection for Low-Cost Privacy Protection for Low-Cost
RFID Tags in Iot SystemRFID Tags in Iot SystemRFID Tags in Iot SystemRFID Tags in Iot System

 Ye Li, Fumio Teraoka
Keio University,

Graduate School of Science and
Technology

22

ContentsContentsContentsContents

Introduction1111

Security Requirements for RFID Tags2222

Related work3333

The proposed protocol4444

Analyses5555

Simulation & Conclusion

6666

33

I. IntroductionI. IntroductionI. IntroductionI. Introduction

 RFID tag, or transponder

RFID reader, or transceiver

back-end database

RFIDRFIDRFIDRFIDRFIDRFIDRFIDRFID

� RFID: an enabler of IoT Being attached almost to everything
making it intelligent. If all objects

were equipped with RFID tags, they
could be identified by the PC.

44

I. IntroductionI. IntroductionI. IntroductionI. Introduction

�Low-cost RFID tags:
Lacking resources to perform true cryptographic

operations.

�Research challenges:
The communication channel between the tag and the

reader is insecure. Hence, the low security
performance may result in leakage of personal
information.

55

� Confidentiality
All of the information in the protocol is securely transmitted.

� Indistinguishability
The sent information from the tag or the reader should not be

different from the sent information of other tags.

� Forward Security
The previously sent information cannot be tracked using the

present information of the tag.

�Mutual Authentication
Unlike the more common RFID authentication protocols where only

one side (either the reader or the tag) authenticate the other.

II. II. II. II. Security Requirements for low-costSecurity Requirements for low-costSecurity Requirements for low-costSecurity Requirements for low-cost Tags Tags Tags Tags

6

III. III. III. III. Related workRelated workRelated workRelated work
�Hash Lock protocol

　

2. The tag's identifier,
ID, is directly sent
without any encryption.

1. The metaIDtag
keeps same in each
authentication
process.

Challenge

7

III. III. III. III. Related workRelated workRelated workRelated work
�Gossamer Protocol

　

The protocol is made up of three stages: (1) tag identification, (2) mutual
authentication, and (3) index pseudonym (IDS) and key updating.

cryptanalysis shows that
the attack is possible when

the tag transmits
information D to the reader

for authenticating itself,
because it contains the tag’s

information ID,

Challenge

8

III. III. III. III. Related workRelated workRelated workRelated work

� A new protocol based on the ideas of hash locker
and mutual authentication mechanism is proposed.　　　　　　　　

�security issues of the existing protocols

　
Hash Lock Randomized Lock one time password Gossamer

Confidentiality ○ ○ ○ △

Forward security
× × × ○

Mutual
authentication × × ○ ○

Eavesdropping × × △ △

Track attacking
prevent × ○　 ○ ○

9

IV. IV. IV. IV. The proposed protocolThe proposed protocolThe proposed protocolThe proposed protocol

�Assumptions and Notations

1. A tag is passive and has a rewritable memory such as
EEPROM with reasonable size.

2. The communication channel between the reader and
the back-end database is secure.

3. The cryptographic hash function in the protocol
requires security of preimage resistance, 2nd-preimage
resistance, collision avoidance.

10

IV. IV. IV. IV. The proposed protocolThe proposed protocolThe proposed protocolThe proposed protocol

T　Tag, or transponder　　　　　　　　　　　　　　　　　
R　 Reader, or transceiver
D　 Database
IDt　 Identification value stored in the tag
IDd　dentification value stored in the database
Ni　 The ith nickname, i=1,…,n. n is the number of nicknames stored in the tag

Kt　 The secret key stored in the tag
Kd　The secret key stored in the database
r　 Random number generated
||　 Link operation

Initialize: Tag: {Kt, IDt, Ni} Database: {Kd, IDd, Ni}for all tags
Tag

Ht(), Gt(), ||
Reader
Hr(), ||

Database
Gd(), ||“Query”, r

Step 1: Challenge

Step 2: T-R response Ht(Ni || Kt), Gt(IDt || r), Ni

Step 3: R-D response Ht(Ni || Kt), Gt(IDt || r), Ni, r

Step 4: D-R reply

Hr(Kd || r)

Tag computes Ht =Ht(Kt || r), If Hr == Ht,
Reader is authenticated, Otherwise, failed!

Step 5: R-T reply

Find IDd with Ht and Ni, Gd= Gd(IDd || r), If Gd ==
Gt, Tag is authenticated, Otherwise, failed!

Kd

11

IV. IV. IV. IV. The proposed protocolThe proposed protocolThe proposed protocolThe proposed protocol

Initialize: Tag: {Kt, IDt, Ni} Database: {Kd, IDd, Ni}for all tags

Tag
Ht(), Gt(), ||

Reader
Hr(), ||

Database
Gd(), ||

Step 1: Challenge

“Query”, r

Initial setup:
Each tag stores its identifier, IDt, secret key, Kt, and several
nicknames, Ni. And shared within the back-end database.
Each tag has 2 hash functions, Ht() and Gt(), and link operation. And
the reader has a random number generator.

Step 1 (Challenge):
The reader generates a fresh random nonce, r, and sends it with
query to the tag.

12

IV. IV. IV. IV. The proposed protocolThe proposed protocolThe proposed protocolThe proposed protocol

Step 2 (T-R response)
After being queried, the 2 hash values, Ht and Gt, are calculated
and sent to the reader with the picked nickname in this step.

Step 3 (R-D response)
The received information Ht, Gt, Ni and r, is sent to the
database to find the corresponding secret key, Kd, stored
in the database.

Step 2: T-R response Ht(Ni || Kt), Gt(IDt || r), Ni

Step 3: R-D response Ht(Ni || Kt), Gt(IDt || r), Ni, r

Tag Reader Database

...

13

IV. IV. IV. IV. The proposed protocolThe proposed protocolThe proposed protocolThe proposed protocol
Tag Reader Database...

Step 4: D-R reply

Hr(Kd || r)

Tag computes Ht =Ht(Kt || r), If Hr == Ht,
Reader is authenticated, Otherwise, failed!

Step 5: R-T reply

Find IDd with Ht and Ni, Gd= Gd(IDd || r), If Gd ==
Gt, Tag is authenticated, Otherwise, failed!

Kd

Step 4 (D-R reply)
The database will look for IDd due to the received Ni and the
initially-stored hash values. The database computes the hash
value Gd and compares with the received Gt; if Gd equals Gt, the
tag is authenticated by the reade.
If succeeds, Kd is sent to the reader.

14

IV. IV. IV. IV. The proposed protocolThe proposed protocolThe proposed protocolThe proposed protocol
Tag Reader Database...

Step 4: D-R reply

Hr(Kd || r)

Tag computes Ht =Ht(Kt || r), If Hr == Ht,
Reader is authenticated, Otherwise, failed!

Step 5: R-T reply

Find IDd with Ht and Ni, Gd= Gd(IDd || r), If Gd ==
Gt, Tag is authenticated, Otherwise, failed!

Kd

Step 5 (R-T reply)
After receiving Kd, the reader computes the hash value, Hr
and then sends to the tag. On the tag side, it computes Ht and
compares with Hr. If Ht equals Hr, the reader is successfully
authenticated;
Otherwise the protocol fails to execute.

15

V. AnalysV. AnalysV. AnalysV. Analyseeees s s s

�Security Analyses　　　　　　　　

16

V. AnalysV. AnalysV. AnalysV. Analyseeees s s s

�Performance analyses　　　　　　　　

17

VI. VI. VI. VI. SimulationSimulationSimulationSimulation
�Pseudo-code in tag(1)　　　　　　　　

enum sysState ={ s_ini, s_check, s_pass, s_fail };

int AutoRun_Authentication ()
{
 char * s, *Hr ,* r, *Ni;
 int i;
 sysState = s_ini;
 waitQuery(&r);
 i = Random(1,n);
 switch(i)
 {
 case 1: Ni = N1;break;
 case 2: Ni = N2;break;
 ┆
 case n: Ni = Nn;break;
 default: Ni = N1;
 }

// Initialize

18

VI. VI. VI. VI. SimulationSimulationSimulationSimulation
�Pseudo-code in tag(1)　　　　　　　　

enum sysState ={ s_ini, s_check, s_pass, s_fail };

int AutoRun_Authentication ()
{
 char * s, *Hr ,* r, *Ni;
 int i;
 sysState = s_ini;
 waitQuery(&r);
 i = Random(1,n);
 switch(i)
 {
 case 1: Ni = N1;break;
 case 2: Ni = N2;break;
 ┆
 case n: Ni = Nn;break;
 default: Ni = N1;
 }

// pick up
 nickname

19

VI. VI. VI. VI. SimulationSimulationSimulationSimulation

�Pseudo-code in tag(2)　　　　　　　　

 s = connectchar(H(Ni || Kt) , G(IDt || r));
 s = connectchar(s , Ni);
 send(s);

 sysState = s_check;
 waitHashString(& Hr);
 s = comparechar(Ht(Ni || Kt) , Hr);
 if (s == 0) sysState =s_pass
 else sysState = s_fail;
}

// connect character
 & send

20

VI. VI. VI. VI. SimulationSimulationSimulationSimulation

�Pseudo-code in tag(2)　　　　　　　　

 s = connectchar(H(Ni || Kt) , G(IDt || r));
 s = connectchar(s , Ni);
 send(s);

 sysState = s_check;
 waitHashString(& Hr);
 s = comparechar(Ht(Ni || Kt) , Hr);
 if (s == 0) sysState =s_pass
 else sysState = s_fail;
}

// comparechar -> authenticate

21

VI. VI. VI. VI. SimulationSimulationSimulationSimulation
�Pseudo-code in reader　　　　　　　　

void Query(char* d_Ht ,d_ Gt , d_Ni , d_r)
{
 char* Ht, Gt, Ni; // buffer
 r = Random(1,n);
 send (r);
 waitResult(&Ht, &Gt, &Ni);
 d_Ht = Ht;
 d_ Gt = Gt;
 d_Ni = Ni;
 d_r = r;
}

Void AuthToCard(char* Kd)
{
 send (Hr(Kd || r));
}

// waiting
 result

22

VI. VI. VI. VI. SimulationSimulationSimulationSimulation

　

�Simulation environment
 - OS:Windows
 - Software：TestBencher Pro
 - Language:VERILOG

�Processing time
 - The proposed: 77.33ms
 - Gossamer: 120.4ms
Same of (rate of bottom layer,

database, operation system)

23

 Conclusions Conclusions Conclusions Conclusions

� A new mutual authentication protocol based on the hash
function and the nicknames is proposed and the efficiency of
the proposal has been verified in the simulation.

� The security analyses and performance analyses show that the
proposed protocol is secure against several types of attacks.

� The randomly-chosen nickname is utilized in authentication,
during which the security level is assured due to the fuzziness
of the picked nicknames and the usage of hash encryption.

� In conclusion, the proposed protocol has great
potentials for low-cost RFID tags in the IoT system.

2424

