

Privacy Protection for Low-Cost RFID Tags in Iot System

<u>Ye Li</u>, Fumio Teraoka Keio University, Graduate School of Science and Technology

Design the Future Looking Ahead to Our Next 150 Years

I. Introduction

Low-cost RFID tags:

Lacking resources to perform true cryptographic operations.

Research challenges:

The communication channel between the tag and the reader is insecure. Hence, the low security performance may result in leakage of personal information.

II. Security Requirements for low-cost Tags

* Confidentiality

All of the information in the protocol is securely transmitted.

Indistinguishability

The sent information from the tag or the reader should not be different from the sent information of other tags.

Forward Security

The previously sent information cannot be tracked using the present information of the tag.

Mutual Authentication

Unlike the more common RFID authentication protocols where only one side (either the reader or the tag) authenticate the other.

authentication, and (3) index pseudonym (IDS) and key updating.

III. Related work

security issues of the existing protocols

	Hash Lock	Randomized Lock	one time password	Gossamer
Confidentiality	0	0	0	Δ
Forward security	×	×	×	0
Mutual authentication	×	×	0	0
Eavesdropping	×	×	Δ	Δ
Track attacking prevent	×	Ο	Ο	0

A new protocol based on the ideas of hash locker and mutual authentication mechanism is proposed.

50-

IV. The proposed protocol

Assumptions and Notations

1. A tag is passive and has a rewritable memory such as EEPROM with reasonable size.

2. The communication channel between the reader and the back-end database is secure.

3. The cryptographic hash function in the protocol requires security of preimage resistance, 2nd-preimage resistance, collision avoidance.

IV. The proposed protocol

Initializ	e: <i>Ta</i>	g: $\{K_{t}, ID_{t}, N_{i}\}$		> Database	$E: \{K_d, ID_d, N_i\} \text{ for}$	r all tags	
Step 1: 0	Challenge	Tag HO CO II	Read	ler	Database		
		$^{II}_{\mathcal{A}}, O_{\mathcal{A}}, \parallel \qquad \stackrel{\text{"Q}}{\longleftarrow}$	uery", r		$U_{d}(), \parallel$		
Step 2:	T-R respons	$\frac{H_i(N_i)}{ I }$	$K_t, G_t(ID_t \parallel r)$, <i>N_i</i>			
Step 3: 1	R-D respons	se	1	$H_{i}(N_{i} \parallel K_{i}), G_{i}$	$(ID_t \parallel r), N_i, r$		
Step 4: D-R replyFind ID_d			Find ID_d with	H_t and N_t , G_a	$\int_{a}^{b} G_{d}(ID_{d} \parallel r), \text{ If }$	$G_d ==$	
G_{p} , Tag is authenticated, Otherwise, failed!							
	·_·_·			.←			
Step 5: 1	R-T reply	< <u> </u>	$H_r(K_d \parallel r)$				
Tag computes $H_t = H_t(K_t r)$, If $H_r == H_t$,							
Reader is authenticated, Otherwise, failed!							
	T Tag, or tra	nsponder	Kt Kd	The secret key s	stored in the tag	KEIO UNIVERSITY	
	D Database	transcerver	r	Random numbe	r generated	÷	
	IDt Identific	ation value stored in the	tag	Link operation	0	TIMUS GLADIO FORT	
Ni The ith nickname, $i=1,,n$. n is the number			database he number of nick	names stored in the	he tag	10	

IV. The proposed protocol

Initial setup:

Each tag stores its identifier, ID_{t} , secret key, K_{t} , and several nicknames, N_{i} . And shared within the back-end database. Each tag has 2 hash functions, $H_{t}()$ and $G_{t}()$, and link operation. And the reader has a random number generator.

Step 1 (Challenge):

The reader generates a fresh random nonce, r, and sends it with query to the tag.

Step 2 (T-R response)

After being queried, the 2 hash values, H_{t} and G_{t} , are calculated and sent to the reader with the picked nickname in this step.

Step 3 (R-D response)

The received information H_t , G_t , N_i and r, is sent to the database to find the corresponding secret key, K_d , stored in the database.

V. Analyses

Security Analyses

Protocol	HL	RHL	Gossamer	Proposed
Confidentiality	OK	OK	moderate	OK
Indistinguishablity	ng	ng	OK	OK
Forward security	ng	ng	OK	OK
Mutual authentication	ng	ng	OK	OK
Eavesdropping	ng	ng	moderate	OK
attack prevent				
Spoofing attack prevent	ng	ng	OK	OK
Replay attack prevent	ng	ng	OK	OK
Track attacking prevent	ng	OK	OK	OK

V. Analyses

*Performance analyses

Protocol		HL	RHL	Gossamer	Proposed
No. of	Tag	1	2	—	3
hash	Reader	—			1
	DB	_	N	—	N
No. of	Tag	_	1	3	1
RNG	Reader	_	_		1
	DB	·	<u> </u>	—	—
No. of	Tag	_		8	_
ROT	Reader	,	. <u> </u>	10	—
	DB		<u> </u>	12	—
No. of		6	5	5	5
auth steps					
Required	Tag	2L	L	7L	2L + nL
memory	DB	4LN	LN	4LN	(2L+nL)N

VI. Simulation

Pseudo-code in tag(2)

}

Reader

Tag

VI. Simulation

Simulation environment

- OS:Windows
- Software: TestBencher Pro
- Language: VERILOG

Processing time

- The proposed: 77.33ms
- Gossamer: 120.4ms

Same of (rate of bottom layer, database, operation system)

. 98 1 0	.88	0ms 5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms	45ms 50ms 55ms 60	ms 65ms	, [70ms , , ,	75ms	30ms 185ms
1 2 3		Step 1 Challenge	000012153524	Step 5 R	-T reply {	10000	37
5 6 7	N N N		000012153524 455123FDLA2A		Ĺ		2
8 9 10		Step 2 T-R response	002D94D 45			37F1CD9	FE7E35D9F8A1CF01D51C3C8D6
11 12 13 14	N N N	C1 2C CD 4F 43 85 81 71 A2 06 31 6E EE 84 80 DC 84 A2 40 D9 D2 F0 15 48 E4 EC DD D8 40 FE	19 37 36 40 2A 4A FD 23 61 45 24 35 15 12	Step 3 R	-D response	00	
15 16 17	и л л	000000000000000000000000000000000000000			A2B4DC8084EE 45 A2E6	6E3106A271B1B6 6123FD4A2A C809D2F96B88	434FCD
18 19	N N	000000000000	Step 4 D	-R reply \prec	5103 40363719FE40D	A8CB09B32A81 BDDECE44B15F0	D2D94D
20 21 22 23	N N N			D1 08 88 68	A2E6 B F9 D2 09 C8 E6	C809D2F96B88	A2

Conclusions

- A new mutual authentication protocol based on the hash function and the nicknames is proposed and the efficiency of the proposal has been verified in the simulation.
- The security analyses and performance analyses show that the proposed protocol is secure against several types of attacks.
- The randomly-chosen nickname is utilized in authentication, during which the security level is assured due to the fuzziness of the picked nicknames and the usage of hash encryption.
- In conclusion, the proposed protocol has great potentials for low-cost RFID tags in the IoT system. **REPORTING**

Thank You !

24